Abstract

Application of the principle of maximum resiliency to a pelagic food web model leads to the conclusion that the ratio of heterotrophic bacterial biomass to phytoplankton biomass will be greatest under oligotrophic conditions. This prediction is in accord with the results of several field studies. Under eutrophic conditions, model results indicate that the same ratio will be positively correlated with temperature, and that microbial biomass will be dominated by phytoplankton at low temperatures and high production rates. Predictions of heterotrophic bacterial biomass based on the model and information on temperature and photosynthetic rates or phytoplankton biomass are in excellent agreement with field data from a wide variety of limnetic and marine habitats with depths ≥ 6 meters. The model consistently underestimated heterotrophic bacterial biomass in systems impacted by riverine throughput and in hypereutrophic systems in which the euphotic zone was less than 3 meters deep. In systems less than 3-4 meters deep the model was less successful in predicting heterotrophic bacterial biomass than in deeper systems, although there was no apparent bias in the results. Because of the short generation time of aquatic microbes, pelagic food web behavior that is determined primarily by the activity of these organisms may tend to display characteristics expected of the mature stages of ecological succession. Maximum resiliency, a characteristic expected of such mature stages, may therefore prove to be a useful construct in modeling the response of pelagic food webs to environmental change.
Ecologists have hypothesized for many years that the evolution of biological systems is driven by fundamental principles or forces. Lotka (1922), for example, argued that natural selection tended to maximize the energy flux through a system, at least insofar as this was compatible with the constraints to which the system was subject. Odum (1983) expanded on Lotka’s ideas. He argued that systems that prevail develop designs that maximize the flow of useful energy. “They maximize power, and theories and corollaries derived from the maximum power principle explain much about the structure and processes of systems” (Odum 1983, p. 6).

Odum’s ideas have been sharply criticized by some authors. Fenchel (1987, p. 17), for example, argued that Odum’s approach, “had an appeal for some time, I suppose, only because it was sufficiently obscure and incomprehensible to appear profound.” In reacting to such comments, Patten (1993) observed, “The admissibility of virtually any system configuration, within given physical and resource constraints, does not mean the processes of ecosystem organization are lawless. The challenge is to find the laws, and that is the central thrust of Odum’s work.”

Recently Cropp and Gabric (2002) used a genetic algorithm to simulate the adaptation of the biota in a simple linear food chain consisting of a limiting nutrient, autotrophs, and heterotrophs. Four basic selection pressures were formulated by considering thermodynamic (entropy, exergy, and ascendancy) and ecological (sustainable biomass, primary productivity, and productivity per unit biomass) imperatives that influence ecosystems. Interestingly, their simulations suggested that, within the constraints of the external environment and the genetic potential of their constituent biota, ecosystems evolve to the state most resilient to perturbation.

The words “most resilient to perturbation” here mean that, following a small perturbation, the system returns to its equilibrium configuration most rapidly. The rate of return to equilibrium is determined by the real parts of the eigenvalues of the so-called community matrix, whose elements consist of partial derivatives of the deterministic equations describing the temporal dynamics of the system evaluated at the equilibrium point. The more negative the real part of the least negative eigenvalue, the more rapidly the system returns to equilibrium. May (1974) provides a lucid discussion of these topics. Laws et al. (2000) applied the assumption of maximum resiliency to the more complex pelagic food web depicted in Fig. 1. All but two parameters in the model were assigned values based on deterministic equations. Two independent adaptive characteristics of the model, the relative growth rates of the large phytoplankton and the biomass of filter feeders, were assigned values that maximized the resiliency of the steady state system to perturbations at the given temperature and photosynthetic rate. The predictions of the model with respect to the behavior of the export ratio (Downs 1989, Murray et al. 1989), phytoplankton biomass, and heterotrophic bacterial biomass were in remarkable agreement with field observations encompassing a broad range of environmental conditions. According to the model, photosynthetic rate and temperature are the primary determinants of community composition and system behavior.

Several authors have commented on the patterns of heterotrophic and autotrophic biomass in aquatic systems (Pomeroy and Deibel 1986, Li et al. 1992, Simon et al. 1992, Legendre and Rassoulzadegan 1995, Gasol et al. 1997, Biddanda et al. 2001, Cotner and Biddanda 2002). Empirically one observes that the ratio of heterotrophic bacterial biomass to microalgal biomass decreases as systems become more eutrophic (Li et al. 1992, Simon et al. 1992, Gasol et al. 1997, Biddanda et al. 2001, Cotner and Biddanda 2002). Biddanda et al. (2001) commented (p. 732), “The underlying cause of this relationship is unclear.” They suggested two possible explanations: (1) heterotrophic bacteria are selectively grazed by...
bacterivores at the eutrophic end of the gradient, and (2) heterotrophic bacteria are better able to acquire nutrients at low ambient concentrations in oligotrophic systems. Pomeroy and Deibel (1986) have also noted that the ratio of heterotrophy to autotrophy is positively correlated with temperature. They argued that this pattern was due to differences in the temperature dependence of photosynthesis and respiration.

Fig. 2 shows the ratio of heterotrophic bacterial biomass to phytoplankton biomass predicted from the model of Laws et al. (2000), with temperature and photosynthetic rate as the independent variables. In accord with the observations of Li et al. (1992), Simon et al. (1992), Gasol et al. (1997), and Biddanda et al. (2001), the ratio of heterotrophic bacterial biomass to phytoplankton biomass is highest in oligotrophic systems. The ratio is relatively insensitive to temperature in oligotrophic systems, but is strongly and positively correlated with temperature in eutrophic systems, in accord with the observations of Pomeroy and Deibel (1986). Laws et al. (2000) found that predicted and observed heterotrophic bacterial biomass were in excellent agreement in 10 marine ecosystems ranging from the equatorial Pacific to the Ross Sea and Greenland polynya.

In order to more rigorously test the predictions of the Laws et al. (2000) model relative to the role of bacteria in aquatic ecosystems, I have examined data on bacterial biomass, phytoplankton production and/or biomass, and temperature from a wide variety of freshwater and marine ecosystems. The data set includes results from a total of 39 studies, 8 in freshwater and 31 in marine systems (Table 1). The data are taken primarily from results reported in the last 10 years, although a few of the results analyzed by Laws et al. (2000) were reported as long as 15 years ago. Although Fig. 2 treats temperature and photosynthetic rate as the independent variables in the model, the latter is less frequently reported than the concentration of chlorophyll a (chl a). Because the model predicts a one-to-one relationship between photosynthetic rate and phytoplankton carbon, I treated phytoplankton carbon and temperature as independent variables and used these to predict heterotrophic bacterial carbon (C_{HB}) from the output of the model in cases where photosynthetic rates were not reported. I excluded from the initial analysis studies in shallow systems (depth < 5 m), since the Laws et al. (2000) model envisions a strictly pelagic ecosystem. This fact accounts for the relatively small number of freshwater systems included in the data set. The depths of the freshwater systems ranged from 5.9 to 100 m. I also excluded from the initial analysis hypereutrophic systems having chl a concentrations > 100 mg m^{-3}, since the Laws et al. (2000) model assumes nutrient limitation.

Since the model predicts phytoplankton and heterotrophic bacterial biomass in terms of carbon, it was necessary to convert heterotrophic bacterial cell counts and/or cell volume and chl a concentrations to carbon equivalents. In cases where only data on heterotrophic bacterial cell counts were reported by the authors, I assumed a carbon content of 12 fg cell^{-1} for open ocean bacteria and 30 fg cell^{-1} for coastal, estuarine, and limnetic bacteria (Fukuda et al. 1998). To convert chl a concentrations to phytoplankton carbon, I assumed a C:chl a ratio of 50 by weight (Fuhrman et al. 1985, Chróst et al. 1989, Cho and Azam 1990).

Results

I found a high degree of correlation between C_{HB} predicted by the model and C_{HB} estimated from field data (Fig. 3). The model accounts for 84% of the variance in the log-transformed data, which span almost two orders of magnitude in C_{HB}. Sixty-seven percent of the data lie within a factor of 1.6 of the 1:1 line, i.e., heterotrophic bacterial biomass can be predicted...
to within a factor of ±1.6 by the model. There was no systematic difference in the predictions of
the model for marine and limnetic systems, but C_{HB} was predicted more accurately when
photosynthetic rate and temperature were the independent variables ($r = 0.96$) versus
phytoplankton carbon and temperature ($r = 0.78$).

Following this analysis, I examined the ability of the model to predict C_{HB} in three types
of aquatic systems that do not, strictly speaking, conform to the assumptions of the model. In
three hypereutrophic lakes (Table 2), C_{HB} was much less than the model predictions based on chl
α concentrations. In the one case where both chl α concentrations and photosynthetic rates were
reported, the discrepancy was greatly reduced when photosynthetic rate and temperature were
the independent variables in the model. In shallow (mean depth 1.1-3.6 m) ecosystems (Fig. 4),
the three lowest and four highest predicted C_{HB} lay below and above the 1:1 line, respectively.
Given the small number of data points, it is hard to say whether this pattern represents a
systematic bias. There is certainly more scatter in the data, the standard deviation of the log-
transformed data being twice as large in Fig. 4 compared to Fig. 3. Finally, in systems impacted
by river throughput (Table 3), the predictions of the model were consistently higher than the
observed C_{HB}. The discrepancy was most pronounced in the case of inner shelf waters off the
mouth of the Yantze River.

Discussion

At least some of the variance of the relationship between observed and predicted C_{HB} can
be attributed to uncertainty in the factors used to convert chl α and cell counts to carbon.
Phytoplankton C:chl α ratios depend on a variety of factors, including temperature, irradiance,
species composition, and nutritional status (Shuter 1979, Chan 1980). C:chl α ratios reported
from field work have ranged between roughly 20 and 125 by weight (Sakshaug and Holm-
C:chl α ratio of 50 by weight is a reasonable approximation but could produce errors of as much
as a factor of ~ 2. This fact probably accounts for the poorer correlation between the model and
field results when chl α and temperature are the independent variables.

Fukuda et al. (1998) have pointed out that the use of 20 fg C cell$^{-1}$ (Pedrós-Alió and
Brock 1982, Hessen 1985, Fuhrman et al. 1985) as a conversion factor between cell counts and C
HB can lead to overestimation of C_{HB} by as much as 330% in open oceans and underestimation
by as much as 40% in coastal environments. My use of different conversion factors for open
ocean and coastal/limnetic systems has probably reduced the level of noise caused by uncertainty
in this factor, but it seems fair to say that the abscissa in Fig. 3 is associated a nontrivial amount
of noise.

Estimates of photosynthetic rates are also subject to error, both from measurement error
and natural variability. Most reported estimates of photosynthetic rates are based on the 14C
method originally developed by Steemann Nielsen (1952). Fifty years later, there is still
uncertainty over exactly what the 14C method measures (Marra 2002). Even if photosynthetic
measurements could be made with no analytical error, rates vary naturally over space and time,
and any set of discrete measurements will therefore be subject to error when integrated over
space and time. Finally, temperature also varies with space and time, and in temperate and polar
ecosystems, the range of temperature over the course of a year can easily be 20°C (Sommaruga
and Psenner 1995).
The model itself (Fig. 1) is a considerable simplification of the interactions in a pelagic food web, and the assumption of steady state is clearly an approximation that in some cases may be reasonable only when system behavior is integrated over appropriate time and space scales.

Considering the various sources of error in the data and model, the level of noise evident in Fig. 3 seems not unreasonable. The assumption of maximum resiliency leads to predicted system behavior that explains much of the variability of C_{HB} across a wide range of pelagic aquatic ecosystems. The limitations of the model are apparent in Tables 2-3 and Fig. 4. In the three hypereutrophic lakes the concentrations of heterotrophic bacterial carbon estimated using the model with temperature and chl a as independent variables are 20-50 times higher than the observed C_{HB}. Some of this discrepancy may be attributed to the fact that in these systems the concentration of phytoplankton carbon estimated using an assumed C:chl a ratio of 50 is undoubtedly too high. However, it is unlikely that the true C:chl a ratio is much less than 20. Reducing the assumed C:chl a ratio from 50 to 20 reduces the predicted C_{HB} by a roughly proportionate amount, i.e., much less than the factor of 20-50 discrepancy. In the case of Lake Nesjøvatn photosynthetic rates were reported along with chl a concentrations. In this case when C_{HB} is predicted using temperature and photosynthetic rate as the independent variables, the discrepancy between observed and predicted C_{HB} is reduced by almost an order of magnitude. In this case at least, the predictions of the model appear much more robust when photosynthetic rate is substituted for phytoplankton biomass as the second independent variable. The implication is that C_{HB} is determined primarily by the activity and not the biomass of the phytoplankton. However, there is still a 5.6-fold discrepancy between observed and predicted C_{HB}, which is about three times the standard deviation of the data in Fig. 3.

The average spectral extinction coefficient of chl a and associated pigments is about 0.016 m2 mg$^{-1}$ chl a (Bannister 1974). At chl a concentrations of 100-200 mg m$^{-3}$ (Table 2), the 1% light level occurs at depths of ~1.5-3.0 meters. In such turbid systems photosynthetic rates are limited primarily by light rather than nutrients. The implication of the results in Fig. 3 and Table 2 is that the relationship between phytoplankton activity and C_{HB} is fundamentally different in nutrient-limited and light-limited systems. This difference may reflect the tendency of photosyntheate to be released as dissolved organic carbon in the former and to accumulate as particulate organic carbon in the latter (Carlson and Ducklow 1996, Carlson et al. 1998, Biddanda et al. 2001). The model (Fig. 1) accounts for this behavior by routing more photosyntheate through the microbial loop, but this is apparently insufficient to explain the difference between the behavior of nutrient-limited and light-limited food webs.

Except under hypereutrophic conditions, the metabolism of shallow aquatic ecosystems is dominated by benthic processes (Scheffer 2001). In such systems, the interaction between the benthos and water column can have a major impact on the composition of the planktonic community (Scheffer 1999). Benthic filter feeders, in particular, can structure the plankton through top-down control, and benthic larvae may contribute substantially to the biomass of the planktonic community. The release of nutrients associated with benthic respiratory activity can be a major source of nutrient loading to the water column. While it is fair to say that the benthic community competes with the pelagic community for resources (Scheffer et al. 2000) and reduces its overall biomass, it is not obvious from the foregoing considerations that the existence of the benthos would systematically alter the relative numbers of phytoplankton and bacteria in the water column. Based on this logic, the larger amount of scatter in Fig. 4 compared to Fig. 3...
is not surprising. Speculation about bias in the predictions is compromised by the small number of data points.

The consistent bias apparent in the case of systems impacted by river discharge (Table 3) probably reflects an advective throughput of microbial biomass that is not allowed for in the model (Fig. 1). In the model, all living biomass is produced in situ. In addition to being impacted by riverine throughput, the Ria de Aveiro stations in Table 3 are shallow, with mean depths ranging from 0.9 to 2.5 meters (Cunha et al. 2000). However, as noted above, shallowness per se does not appear to create a systematic bias in the predictions. The mean salinity of the inner shelf stations off the mouth of the Yantze River was 28 psu (Shiah et al. 2001), which implies that ~20% of the water was river throughput. This undoubtedly accounts for the anomalous autotrophic/heterotrophic microbial biomass ratio at the inner-shelf stations compared to the mid-shelf and outer-shelf stations (Table 1), where mean salinities were 32.6 and 34.2 psu, respectively (Shiah et al. 2001).

Simon et al. (1992) have argued that limnetic systems support more bacterial biomass relative to phytoplankton biomass than marine systems. The basis for this statement is the fact that in the six limnetic and six marine systems analyzed by Simon et al. (1992) limnetic systems tended to have a higher concentration of C_{HB} at comparable concentrations of chl a. This is not, however, the case in the more recent and extensive studies summarized here (Fig. 5). When chl a concentrations as abscissa are plotted against C_{HB} as ordinate and a model II geometric mean regression line drawn through the data (Fig. 5), only three of the eight freshwater data points lie above the regression line. The scatter in the data in Fig. 5 is much greater (r = 0.79) than in Fig. 3 (r = 0.91), and several of the largest deviations can easily be explained on the basis of temperature effects. The Ross Sea (Asper and Smith 1999) and Lake Pluβsee (Chrost et al. 1989) studies were carried out at temperatures of 0°C and 9°C, respectively. The concentration of chl a was relatively high in both cases, but at these low temperatures and moderate to high production rates the ratio of C_{HB} to phytoplankton carbon is much less than at temperatures of 20-25°C (Fig. 2). The largest deviations above the regression line were associated with data collected from the Peru upwelling system (Wilkerson et al. 1987) and Strait of Georgia (Harrison et al. 1991). In these two cases, the temperatures (16.8°C and 17.3°C, respectively) were not responsible for the large positive deviations. Both systems were studied during upwelling/bloom conditions when the phytoplankton were turning over rapidly. Merely relating C_{HB} to phytoplankton biomass does not allow for differences in turnover rates, and in these two cases the differences in turnover rates were evidently great enough to cause large deviations from the regression line. The Laws et al. (2000) model does a much better job of predicting C_{HB} in these four cases (Table 1), in the first two (Ross Sea and Lake Pluβsee) because the model explicitly accounts for temperature effects, and in the second two because information was available on photosynthetic rates, which are the product of turnover rate and biomass. Hence in the case of the Peru upwelling and Strait of Georgia data, it was possible to implement the model in a way that accounted for turnover rate effects.

Finally, it is noteworthy that the slope of the geometric mean regression line in Fig. 4 is 0.78. This result implies that, other factors being equal, the ratio of C_{HB} to chl a decreases with increasing chl a concentration. This conclusion is consistent with earlier studies (Cole et al. 1988, Simon et al. 1992, del Giorgio et al. 1997, Biddanda et al. 2001).

The implication of this analysis is that the underlying cause of the relationships between heterotrophic bacterial biomass and microalgal biomass observed by previous investigators (Pomeroy and Deibel 1986, Cole et al. 1988, Li et al. 1992, Simon et al. 1992, Legendre and
Rassoulzadegan 1995, del Giorgio et al. 1997, Gasol et al. 1997, Biddanda et al. 2001) may be the tendency of natural pelagic ecosystems to evolve toward a condition of maximum resiliency. This tendency is believed to be a characteristic of the mature stages of ecological succession (Odum 1969). Because plankton have short generation times, it may also be a characteristic of systems whose behavior is largely controlled by the dynamics of the plankton community. As noted by Hutchinson (1967, p. 376), "The annual cycle [of the plankton] is thus, in terms of generation time, the equivalent of perhaps up to ten thousand years in the successional history of organisms which are replaced as some forest trees every fifty or one hundred years." However, even if maximum resiliency proves to be a characteristic of many natural planktonic ecosystems, it is certainly possible that other ecological laws influence the behavior of these systems. The first law of thermodynamics is a cornerstone of thermodynamic theory, but not all of thermodynamics can be explained on the basis of conservation of energy.

Systems with unstable steady states are not likely to persist in nature. Furthermore, systems that require a long time to return to their equilibrium configurations following a perturbation are unlikely to be found near their equilibrium point in other than very stable environments. In the simple linear food chain modeled by Cropp and Gabric (2001), the conditions associated with various selection pressures are easily identified, and the selection pressures suggested by Lotka (1922) and Odum (1983) lead to essentially the same system behavior as does maximum resiliency. Fath et al. (2001) have likewise noted an equivalency of system behavior governed by seemingly disparate ecological goal functions. In more complex systems, application of thermodynamic analogues as selection pressures to determine ecosystem behavior has met with mixed success. Månsson and McGlade (1993), for example, point out that the flows of carbon in six marine ecosystems studied by Baird et al. (1991), "were contrary to what Odum has suggested, in that the aggregate amount of cycling was an indication not of maturity but rather of the type of dynamics and levels of stress." On the other hand, Cropp and Gabric (2001) observe that in some cases thermodynamic approaches have met with considerable success in estimating parameters to describe real ecosystems (Jørgensen and Straskraba 2000).

Is it possible that very similar predictions concerning the partitioning of microbial biomass could emerge from the model in Fig. 1 if a criterion other than maximum resiliency were applied? To explore this hypothesis, I tried simply averaging the ratio of heterotrophic bacterial biomass to phytoplankton biomass (C_{HB}/C_P) over all stable steady states at various temperatures and allochthonous nutrient loading rates and compared the average C_{HB}/C_P ratio to the ratio associated with maximum resiliency. The result of this exercise showed that at high temperatures (e.g., 25°C) the ratio associated with maximum resiliency was little different from the ratio averaged over all stable steady states. This conclusion was especially true under oligotrophic conditions. Under eutrophic conditions and high temperatures, the discrepancy was at most 10-20%. The discrepancy became much greater at low temperatures (e.g., 5°C). The model (Fig. 2) predicts a range of roughly two orders of magnitude in the C_{HB}/C_P ratio at 5°C, with the lowest ratios under eutrophic conditions and the highest under oligotrophic conditions. If the ratio is simply averaged over all stable steady states at a given allochthonous nutrient loading rate, the average ratio ranges between roughly 0.6 and 0.7. Since the predictions of the model are in good agreement with field data at low temperatures over a wide range of C_P (e.g., Crooked Lake and Lake Plušsee, Table 1), I conclude that applying the criterion of maximum resiliency considerably improves the predictive ability of the model as opposed to simply requiring that the steady state be stable.

[Cropp and Gabric (2001) observe that in some cases thermodynamic approaches have met with considerable success in estimating parameters to describe real ecosystems (Jørgensen and Straskraba 2000).]
I agree with Patten (1993) that the important thrust of Odum’s (1983) work was his search for laws that govern the organization of ecosystems. Maximum resiliency may well be one of those laws. Indeed, Odum (1969) concluded more than 30 years ago that ecological succession leads to mature stages characterized by good resistance to external perturbations. As one of those laws, Odum’s (1969) work was his search for laws that govern the organization of ecosystems. Maximum resiliency may well be a useful construct for pelagic food webs.

Acknowledgements

This work was supported by National Science Foundation grant OCE-97-25966. I am indebted to three anonymous reviewers for their constructive comments on this paper.

Table 1. Characteristics of aquatic systems in which heterotrophic bacterial carbon (CHB) was estimated using the model of Laws et al. (2000)

<table>
<thead>
<tr>
<th>Body of water and temperature</th>
<th>Photosynthetic rate (mg C m(^{-3}) d(^{-1}))</th>
<th>CHB (mg m(^{-3}))</th>
<th>Predicted CHB based on temperature and photosynthetic rate (mg m(^{-3}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Atlantic, Canary Islands, zone A (20°C)</td>
<td>2.5</td>
<td>4.6</td>
<td>4.8</td>
<td>Bode et al. (2001)</td>
</tr>
<tr>
<td>N. Atlantic, Canary Islands, zone B (20°C)</td>
<td>1.7</td>
<td>4.4</td>
<td>3.1</td>
<td>Bode et al. (2001)</td>
</tr>
<tr>
<td>N. Atlantic, Canary Islands, zone C (20°C)</td>
<td>2.7</td>
<td>5.4</td>
<td>5.3</td>
<td>Bode et al. (2001)</td>
</tr>
<tr>
<td>Sargasso Sea, BATS (21°C)</td>
<td>3.3</td>
<td>2.2</td>
<td>4.1</td>
<td>Carlson et al. (1998)</td>
</tr>
<tr>
<td>Ross Sea (0°C)</td>
<td>34.5</td>
<td>11</td>
<td>9.6</td>
<td>Carlson et al. (1998)</td>
</tr>
<tr>
<td>Lawrence Lake (21°C)</td>
<td>41</td>
<td>72</td>
<td>53.5</td>
<td>Coveney and Wetzel (1995)</td>
</tr>
<tr>
<td>North Atlantic, NABE (12.5°C)</td>
<td>31.5</td>
<td>20</td>
<td>23.1</td>
<td>Ducklow et al. (1993)</td>
</tr>
<tr>
<td>Equatorial Pacific, La Nina (24°C)</td>
<td>12.3</td>
<td>12</td>
<td>13</td>
<td>Ducklow et al. (1995)</td>
</tr>
<tr>
<td>Equatorial Pacific, El Nino (27°C)</td>
<td>8.0</td>
<td>10</td>
<td>7.3</td>
<td>Ducklow et al. (1995)</td>
</tr>
<tr>
<td>Arabian Sea (25°C)</td>
<td>17</td>
<td>19.6</td>
<td>16.7</td>
<td>Ducklow et al. (2000)</td>
</tr>
<tr>
<td>Strait of Georgia (17.3°C)</td>
<td>190</td>
<td>183</td>
<td>231</td>
<td>Harrison et al. (1991)</td>
</tr>
<tr>
<td>Body of water and temperature</td>
<td>Phytoplankton carbon (mg C m⁻³)</td>
<td>CHB (mg m⁻³)</td>
<td>Predicted CHB based on temperature and phytoplankton carbon (mg m⁻³)</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>N. Pacific, station ALOHA (25°C)</td>
<td>3.1</td>
<td>3.9</td>
<td>3.1</td>
<td>Karl and Dobbs (1998)</td>
</tr>
<tr>
<td>Subarctic Pacific, station Papa (6°C)</td>
<td>8</td>
<td>14.2</td>
<td>22.7</td>
<td>Kirchman et al. (1993)</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>14</td>
<td>10</td>
<td>Panzenböck et al. (2000)</td>
</tr>
<tr>
<td>North Sea, transect 1, May, 1992 (9°C)</td>
<td>12.3</td>
<td>38.7</td>
<td>23.1</td>
<td>Richardson et al. (1998)</td>
</tr>
<tr>
<td>North Sea, transect 2 (9.5°C)</td>
<td>9.0</td>
<td>39.7</td>
<td>34.9</td>
<td>Richardson et al. (1998)</td>
</tr>
<tr>
<td>North Sea, transect 3 (10°C)</td>
<td>9.1</td>
<td>59.8</td>
<td>33.4</td>
<td>Richardson et al. (1998)</td>
</tr>
<tr>
<td>East China Sea, mid-shelf (27°C)</td>
<td>6.5</td>
<td>3.5</td>
<td>7.9</td>
<td>Shiah et al. (2001)</td>
</tr>
<tr>
<td>East China Sea, outer-shelf (29°C)</td>
<td>3.2</td>
<td>3.2</td>
<td>3.3</td>
<td>Shiah et al. (2001)</td>
</tr>
<tr>
<td>Lake Constance (13.4°C)</td>
<td>72</td>
<td>126</td>
<td>163</td>
<td>Sorokin and Kogelschatz (1979)</td>
</tr>
<tr>
<td>Greenland polynya (0°C)</td>
<td>7.2</td>
<td>7.2</td>
<td>7.8</td>
<td>Yager (1996)</td>
</tr>
<tr>
<td>Lake Plüsee (7°C)</td>
<td>1975</td>
<td>25.3</td>
<td>24.8</td>
<td>Chróst et al. (1989)</td>
</tr>
<tr>
<td>Eagle Mountain Lake (18.5°C)</td>
<td>875</td>
<td>120</td>
<td>390</td>
<td>Chrzanowski and Grover (2001)</td>
</tr>
<tr>
<td>Joe Pool Lake (18.5°C)</td>
<td>250</td>
<td>105</td>
<td>109</td>
<td>Chrzanowski and Grover (2001)</td>
</tr>
<tr>
<td>Ria de Aveiro, Portugal, stations N1 and I2 (19.6°C)</td>
<td>425</td>
<td>123</td>
<td>226</td>
<td>Cunha et al. (2000)</td>
</tr>
<tr>
<td>Delaware Estuary, upper region (15°C)</td>
<td>560</td>
<td>90</td>
<td>132</td>
<td>Hoch and Kirchman (1993)</td>
</tr>
<tr>
<td>Delaware Estuary, middle region (15°C)</td>
<td>750</td>
<td>99</td>
<td>177</td>
<td>Hoch and Kirchman (1993)</td>
</tr>
<tr>
<td>Delaware Estuary, lower region (15°C)</td>
<td>540</td>
<td>111</td>
<td>128</td>
<td>Hoch and Kirchman (1993)</td>
</tr>
<tr>
<td>Maliakos Gulf, Greece Inner gulf (19°C)</td>
<td>62.5</td>
<td>30</td>
<td>31</td>
<td>Kormas et al. (1998)</td>
</tr>
<tr>
<td>Maliakos Gulf, Greece middle gulf (19°C)</td>
<td>50</td>
<td>11.3</td>
<td>28.7</td>
<td>Kormas et al. (1998)</td>
</tr>
<tr>
<td>Maliakos Gulf, Greece outer gulf (19°C)</td>
<td>25</td>
<td>9</td>
<td>22</td>
<td>Kormas et al. (1998)</td>
</tr>
<tr>
<td>Crooked Lake, Antarctica (1.2°C)</td>
<td>15</td>
<td>6.4</td>
<td>13.8</td>
<td>Laybourn-Parry et al. (1992)</td>
</tr>
<tr>
<td>English Channel (12°C)</td>
<td>100</td>
<td>20</td>
<td>19.3</td>
<td>Rodríguez et al. (2000)</td>
</tr>
<tr>
<td>St. Lawrence estuary (4.7°C)</td>
<td>160</td>
<td>44</td>
<td>12</td>
<td>Sime-Ngando et al. (1995)</td>
</tr>
<tr>
<td>Piburger See (12.3°C)</td>
<td>150</td>
<td>48</td>
<td>21</td>
<td>Sommaruga and Psenner (1995)</td>
</tr>
<tr>
<td>Ría de Vigo (15°C)</td>
<td>175</td>
<td>100</td>
<td>41.6</td>
<td>Zdanowski and Figueiras (1997)</td>
</tr>
</tbody>
</table>
Table 2. Heterotrophic bacterial biomass in hypereutrophic lakes estimated using the Laws et al. (2000) model

<table>
<thead>
<tr>
<th>Lake and temperature (oC)</th>
<th>Chl a (mg m(^{-3}))</th>
<th>Photosynthetic rate (mg C m(^{-3}) d(^{-1}))</th>
<th>CHB (mg m(^{-3}))</th>
<th>Predicted CHB based on chl a (mg m(^{-3}))</th>
<th>Predicted CHB based on photosynthetic rate (mg m(^{-3}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Rodó (18.9oC)</td>
<td>223</td>
<td>210</td>
<td>4,956</td>
<td></td>
<td></td>
<td>Sommaruga (1995)</td>
</tr>
<tr>
<td>Lake</td>
<td>105</td>
<td>105</td>
<td>5,396</td>
<td></td>
<td></td>
<td>Donachie et al. (1999)</td>
</tr>
<tr>
<td>Kauhakö (24.5oC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>al. (1999)</td>
</tr>
<tr>
<td>Lake</td>
<td>232</td>
<td>330</td>
<td>3,204</td>
<td>376</td>
<td></td>
<td>Vadstein et al. (1988)</td>
</tr>
<tr>
<td>Nesjøvatn (16oC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Heterotrophic bacterial biomass in shallow/riverine eutrophic systems estimated using the Laws et al. (2000) model

<table>
<thead>
<tr>
<th>System and temperature (oC)</th>
<th>Chl a (mg m(^{-3}))</th>
<th>CHB (mg m(^{-3}))</th>
<th>Predicted CHB based on chl a (mg m(^{-3}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ria de Aveiro Station I4 (22.7°C)</td>
<td>17</td>
<td>157</td>
<td>671</td>
<td>Cunha et al. (2000)</td>
</tr>
<tr>
<td>Ria de Aveiro Station I6 (22.7°C)</td>
<td>19</td>
<td>189</td>
<td>748</td>
<td>Cunha et al. (2000)</td>
</tr>
<tr>
<td>Ria de Aveiro Station I8 (25.2°C)</td>
<td>26.5</td>
<td>256</td>
<td>1,379</td>
<td>Cunha et al. (2000)</td>
</tr>
<tr>
<td>Ria de Aveiro Station Rio Boco (25.7°C)</td>
<td>27.6</td>
<td>255</td>
<td>1,502</td>
<td>Cunha et al. (2000)</td>
</tr>
<tr>
<td>Yantze River estuary, inner shelf (21°C)</td>
<td>3.93</td>
<td>7.1</td>
<td>123</td>
<td>Shiah et al. (2001)</td>
</tr>
</tbody>
</table>
References

Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105-121

Lotka A J (1922) Contribution to the energetics of evolution. Proc Natl Acad Sci USA 8: 147-151
Reitner B, Herzig A, Herndl GJ (1997) Microbial activity under the ice cover of the shallow Neusiedler See (Austria, Central Europe). Hydrobiol 357: 173-184

Fig. 1. Feeding and excretion relationships in a model pelagic food web in which photosynthetic production is partitioned between small and large phytoplankton cells (Laws et al. 2000).
Figure 2. Ratio of heterotrophic bacterial biomass to phytoplankton biomass as a function of photosynthetic rate and temperature for the pelagic food web model shown in Fig. 1. Adjustable parameters were chosen to produce a steady state with maximum resiliency.

Figure 3. Relationship between measured and predicted CHB from the systems in Table 1. The straight line is the 1:1 line. The dashed lines are ±1 standard deviation from the 1:1 line.
Fig. 4. Relationship between measured and predicted CHB for shallow systems (freshwater: Butler et al. 2000, Kisand and Tammert 2000, Revilla et al. 2000, Vörös et al. 1996. marine: Reitner et al. 1997). The straight line is the 1:1 line. The dashed lines are ±1 standard deviation from the 1:1 line.

Fig. 5. Chl a vs. CHB from systems in Table 1 in which information on both was available. The straight line is a geometric mean model II regression line.