Seasonal and ENSO Variability in Global Ocean Phytoplankton Chlorophyll Derived from Four Years of SeaWiFS Measurements.

Jim Yoder and Maureen Kennelly
Graduate School of Oceanography
University of Rhode Island

The purpose of this study is to use the 4-year (1998-2001) time series of SeaWiFS chlorophyll imagery to: (1) quantify the major seasonal (as well as the 1998 ENSO) signals in phytoplankton biomass; (2) determine interannual variability; and (3) find relations in the basin-scale patterns in the global ocean.
What we found....

- 6-month phase shift in peak Chl a conc. between subtropical and subpolar waters;
- greater seasonal range at high latitudes in the Atlantic than in the Pacific;
- interesting phasing between spring and fall biomass peaks at high latitudes in both hemispheres;
- effects of the 1998 ENSO in the tropics, including Equatorial and off-Equatorial impacts; and
- first 6 (of 184) modes account for 68% of variability, with Mode 1 accounting for 41%.

Methods

- Started with 9-km and 8-day SeaWiFS imagery.
- Averaged on a 0.25º X 0.25º grid and then smoothed using a 1º X 1º median filter.
- Subsampled to a 1º X 1º grid covering the global ocean from 50º N to 50º S and from 1998-2001.
- Log-transformed, and then used a 3-point (24 day) running mean to smooth in time.
- Filled in another ca. 20% of missing points.
- Final x,y and time cube has 184, 8-day “maps” each consisting of 25,551 grid points representing 91% ocean coverage [submitted to U.S. JGOFS data archive].
Methods - Analyses

- For EOFs, we used singular value decomposition (SVD) method to calculate temporal amplitudes, spatial eigenfunctions and corresponding eigenvalues.
- Focused interpretation on the first 6 (of 184) modes, i.e. those modes not degenerate.
- Also prepared a similar data set and used similar analyses for summer months (26 “weeks”/year) at high latitudes.

Mean CZCS (a) and mean (b), maximum (c) and minimum (d) SeaWiFS pixel values.
Mode 1 Spatial Pattern and Amplitude Time Series

Mode 2 Spatial Pattern and Amplitude Time Series
Mode 3 Spatial Function and Amplitude Time Series

EOF 3: 6.1%

Amplitudes for Mode 3

Modes 4 and 6 Spatial Pattern and Amplitude Time Series

EOF 4: 6.2%

Amplitudes for Mode 4

EOF 6: 2.7%

Amplitudes for Mode 6
Mode 5 Spatial Pattern and Amplitude Time Series

- **First 3 modes explain 66% of variance.**
- **Mode 1** (49% for NH and 46% for SH) is the same as for previous analyses.
- **Mode 2** enhances spring, and lowers winter, concentrations at latitudes > 40°.
- **SH Mode 2** is dominated by frontal features.

Summer High Latitude Analyses
(and summer is defined as a 26 “week” period centered on solstice; 3-year time series)

- First 3 modes explain 66% of variance.
- Mode 1 (49% for NH and 46% for SH) is the same as for previous analyses.
- Mode 2 enhances spring, and lowers winter, concentrations at latitudes > 40°.
- SH Mode 2 is dominated by frontal features.
Conclusions

- Little inter-annual variability at mid to high latitudes.
- Seasonal variations globally account for substantially (ca. 7X) more variability than did 1998 ENSO effects in the first 6 (non-degenerate) EOF modes.
- Mean global spatial pattern is very stable, i.e. one sees the basic pattern of high vs. low Chl a in 4-year mean, max and minimum fields.