Seasonal variation of export ratio in the Arabian Sea predicted by an ecosystem-circulation model with particle aggregation

Michio Kawamiya and Iris Kriest

Institut für Meereskunde an der Universität Kiel, Duesternbrooker Weg 20, D-24105, Kiel, Germany, Tel.: +49-431-600-4013, Fax.: +49-431-565876, mkawamiya@ifm.uni-kiel.de

Seasonal variation of export ratio (e-ratio) in the Arabian Sea is investigated using a three-dimensional, ecosystem-circulation coupled model with an eddy-permitting resolution, in which particle sinking velocity is computed as a dependent variable by a particle aggregation sub-model. The model shows the sudden increase of e-ratio in late southwestern monsoon season that has been indicated in the 234Th data compiled by Buesseler (1998).

The cause of the time lag in the model between the onsets of monsoon and the e-ratio increase is that a certain time is required before the nitracline is lifted up to supply enough nitrate to the surface.

The pattern of e-ratio is totally changed in an experiment with a constant sinking velocity. An unrealistic process turns out to be critical for e-ratio in this experiment, illustrating advantage of a model with aggregation process over those with the traditional prescription of particle sinking.